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I. Introduction
The purpose here is to study the Lyapunov stability properties of solu-
tions of a system of Volterra integrodifferential equations of the form
t
(L) x'(t) = Ax(t) + [ B(t-s)x(s)ds (* = a/dt)
0
where t > 1 and where x(t) = f(t) on 0<t<7t. Here 7>0 is a given
constant, f is a given continuous, vector'valued function and both A and
B(t) are square matrices. The solution of (L) with initial values (T,f)
will be denoted by x(t,7,f). If T = 0, then the function f reduces to
an initiel vector £(0) = Xy
Volterra integrodifferential equations occur in a variety of appli-
cations. In these applications the initial time 1t is always zero. At first
sight the initial value problem (L) with T > 0O appears to be somewhat
artificial, Though it may be artificial, it is also useful, For example

Grossman and Miller [1] studied the asymptotic behavior of solutions of non-

linear problems of the form

%
y'(t) = Aly(t)+h, (¥(t))]} + é B(t-5) (y(s)+hy(¥(s))}ds, ¥(0) =y,

when |yo| is small, The terms h,(y) and hy(y) were assumed to be smooth
functions of order o(|y]) as y =0. The results in [1] depend on certain
apriori information about the resolvent R(t) associated with the linear
system (L) and its derivative R'(t). In this paper we shall prove that if

B(t) ¢ Ll(O,w), then R(t) is of class Ll(o,w) if and only if the trivial



solution of system (L) is uniformly asymptctically stable. When B(t) and
R(t) are both in Ll(o,w), then it is easy to see that R'(t) ¢ Ll(O,w)

and that R(t) tends to zero as t — o, 'This is ex ¢:ly the type of in-
formation which is necessary in order to apply the results in [ 1].

The remainder of the paper is organized.as fol'ows. Section II
contains preliminary definitions aud results. 1In section III we define
various types of Lyapunov stability for (L). These definitions are natural
extensions of the corresperding notions for ordinary differential equa-
tions. Theorem 1 contains general necessary and sufficient conditions for
uniform stability and uniform asymptotic stability, The remainder of the
section is devoted to connections between stability of (L) and stability
properties of a related Volterra integrodifferential equation with infinite
memory. In section IV we show that if B(t) and R(t) are in Ll(O,m),
then the trivial solution of (L) is uniformly asymptotically stable, More-

1

over for any initial pair (7,f) the solution x(t,7,f) ¢ L” on [T,%).

Conversely if B(t) is Ll and (L) is uniformly asymptotically stable then
R(t) must be in Ll(O,w). The procf of the converse may be of some inde-
pendent interest since it depends on constructing a Lyapunov functional for
(L).

In sections V and VI we give some sufficient conditions on A and
B(t) in order that the trivial solution of (L) is stable, uniformly stable,
asymptotically stable or uniformly asymptotically stable, We assume that
B ¢ L1(0,), that B¥(s) 1is the Laplace trensform of B(t), that is

B¥(s) = [ exp(-st)B(t)dt,
0



and that the determinant of s - A - B¥(s) # 0 when Re s > 0. These as-
sumptions and some additional integrability assumptions on B(t) imply sta-

bility of (L). Section VII contains some examples and conjectures,

II. Preliminaries

Let R" denote real, n-dimensional Euclidean space of column
vectors x = col(xl,xe,...,xn) with the Euclidean norm |x| = ( %x?)l/e,
Let R* be the half line 0 <t <, The symbols c(r") = C[O,oo5 will

denote the set of all continuous functions @: R* 5> R" with the topology

of uniform convergence on compact subsets of rR* (the compact-open topology).

Given ¢ in C(R') define
loll, = max(|o(s)|: 0 < s < t).

The symbols LP(R+) will denote the usual Lebesgue space of measurable

functions f such that
-]
Il = ¢/ | 24)| Fat) /P < =,

Definition 1, Let P be a given function with domain R X C(R+) and range

in R". This function P(t,f) will be called nonanticipative if and only

if for each t >0 one has P(t,f) = P(t,p) wherever f and @ are con-

tinuous functions such that f(s) =¢@(s) on 0<s <t.




Definition 2, Let P(t,f) be a continuous function on R* x C(R*) into

Rn. Then

i) P(t,f) is locally Lipschitz continuous in f if and only if

given any palr of positive constants A and B there exists a constant

L >0 such that |P(t,f) - B(t,9)| < 14|f~cp||t whenever 0 <t <A and both
|f|, ana |o|, <B.

ii) P(t,f) is locally Lipschitz contiuuous in f uniformly in

t if it is locally Lipschitz continuous in f and the Lipschitz constants

L can be chosen independently of A.

Note that if P(t,f) is continuous in (t,f) and locally Lip-
schitz continuous in f, then it is automatically nonanticipative.

Consider a system of equations of the form

(2.1) y'(t) = Ay(t) + £tB(t-S)y(S)ds + (t,y)

where t > 71 and y(t) = f(t) on 0<t <7, If B(t) is locally Ll

on R' and if P(t,f) is continuous and nonanticipative, then for any pair
(t,£) of initial values in R’ x C(R*) the initial value prcblem (2.1)

has at least one local solution., Any locel solution can be continued to the
right so long as it remains bounded. If P is locally Lipschitz continu-
ous in f, then the initial values (71,f) C(etermine the solution of (2.1)

uniquely, See Driver [2] for proofs and details of these assertions.

Definition 3, The resolvent R(t) associated with the linear system (L)

is the unigue solution of the matrix equation




%
(R) R'(t) = AR(t) + [ B(t-s)R(s)ds, R(0) =1I
0

where I is the identity matrix.

If B(t) is locally L'.L on R+, P(t,f) is continuous and non-
anticipative and 1 = 0, then (2.1) may be rewritten in the equivalent

variation of constants form

t
y(t) = R(t)f(0) + EI; R(t-s)P(s,y)ds (t >0).

See [1] for details. In particular if x(t,7,f) is the solution of (L)

for some initial pair (r,f), then

t
x(t+71,7,f) = Ax(t+1,T,f) + [ B(t-s)x(s+1,1,f)ds
0

+ ITB(tH-s) f(s)ds
0

for t >0 with x(7,1,f) = £(7). This inhomogenous initial value problem
can be solved with the aid of the variation of constants formula to obtain

t
(2.2) x(t+7,7,f) = R(t)f(7) + [ R(t-s)UTB(s-»'r-u)f(u)du]ds
0 0

for all t >0. This form of the solution of (L) will be needed .n the
sequel.

Let * denote the Laplace transformation, For example

(2.3) B*(s) = [ exp(-st)B(t)dt
0




for all complex numbers s such that the integral exists. The following

result was proved in [1].

Lemma 1. Suppose that B e Ll(R+) 50 that (2.3) is defined and continuous

when Re s > 0. _I_f;" the determinental condition

(D) det(s-A-B¥(s)) £ 0 for Re s >0

is true, then there exists a constant K >0 such that

|R*(s)] < K(1s|s])™" and |(B')*(s)| < K(1+|s|)™" when Re & >o0.

ITI. General Stability Considerations

Definition 4. Suppose B ¢ Ll(O,T) for each T > 0. Consider the system

(L) with initial conditions (t,f) ¢ R' X ¢(R*). The trivial solution x =0

i_s_ calleds

i) stable if given any 7 >0 and any € >0 there exists a

number 8 >0 (depending on € and 1) such that whenever f ¢ c(r%) and

I f‘||T < 8, then the solution x(t,7,f)  exists for all t > 7 and satisfies

| x(t,7,£)| <e.

ii) uniformly stable if it is stable and & can be chosen inde-

Bendent 9£ T> Q.

one has x(t,7,f) 20 as t -

iv) uniformly asymptotically stable if it is uniformly stable and

if given any € >0 and any A >0 there exists T(€) >0 such that




| x(t+2€),7,f)| <€ uniformly for all t > 7, all T >0 and all f with

Il < A

Theorem 1. Suppose B(t) is locally e or R*. Thens

i) the trivial solution of (L) is uniformly stable if and only if

the function y(t) defined by
t
(3.1) y(t) = J° | J R(t-5)B(s+u)ds|du
o O

exists and is finite for all t >0 and the two functions R(t) and y(t)

are uniformly bounded on R*.

ii) the trivial solution of (L) is uniformly asymptotically stable

if and only if it is uniformly stable and both R(t) and y(t) tend to zero

as t -,

Proofs Suppose x =0 is uniformly stable. Then there exists a constant
B such that for any (7,f) with 7>0 and [f] <1 one has |x(t+1,7,f)| <B
for all t >0. If 7 =0, then |x(t+t,7,f)| =|x(t,0,£(0))| = |R(t)£(0)] < B
for all t >0 and all £(0) satisfying |f£(0)] < 1. In particular
|R(t)] <B for all t >0. Similiarly if 2z(t) = x(t+7,7,f) - R(t)£(7),
then |z(t)] < 2B. By (2.2) 2z(t) must be of the form
+ T
z(t) = [ R(t-s)([ B(s+t-u)f(u)du}ds
0 0
L T
R(t-s)(J B(s+u)f(T-u)du)ds
0

T t
(/ R(t-£)B(s+u)ds)f(T-u)du.
0

/
0
!
0




This means that for all t,7 >0

%
ITU R(t-s)B(s+u)ds|du < 2B,
00

Thus y(t) <2B for all t >0.
Conversely if |R(t)|] <A and y(t) <A for some fixed constant ]

A, then by (2.2) one has

t
| x(t+7,7,£)] < |R(t)£(7)| + IIT[I R(t-s)B(s+u)ds}f( t-u)du|
0 O

<Alg(7)] + Ala), <2l

Thus x =0 is uniformly stable, This proves part i). Part ii) follows in

a similiar manner, Q.E.D.

Let C[-»,») denote the set of all continuous functions

1

?: R -R" such that for any t e Rl the seminorms

(5.2) loll, = supllo(s)]: = < s <t)
are finite, Let B ¢ Ll(R+). Consider the initial valuec problem

(L) X'(t) = AX(t) + ftB(t-a)x(s)ds

for t> 7 with X(t) = £f(t) on -»<t <7, Here (71,f) 1is a pair of

1

initial data in R™ X C[-w,»), The various stability properties for the




trivial solution of (Lw) can be defined in the same way as the correspond-
ing type of stability for (L), see Definition 4, Note that this equation
is "autonomous" in the sense that for any (7,f) one has X(t,7,f) =
X(t-7,0,f,) where f_ 1s the translated function £.(t) = £(t+1). 1In
particular it follows that one need only consider (L ) with initial time
T = 0. Moreover stability and uniform stability are equivalent.

Boundedness or stability for (ym) is rela.ed to uniform sta-

bility for (L). Indeed the following theorem is true,

Theorem 2. Let B ¢ Ll(R+). Then all of the following statements are

eguivalent:

i) the trivial solution of (L) is uniformly stable.

1i) the trivial solution of (L) is (uniformly) stable.

iii) R(t) 4is bounded and for each f e C[-w,») the solution

X(t,0,£) of (L) is bounded on R'.

Proof. Given initial values (0,F) let X(t,F) = X(t,0,F) be the corres-

ponding solution of (L,). Then for any t >0 one has

t ©
X' (t,F) = AX(t,F) + [ B(t-s)X(s,F)ds + [ B(u)F(t-u)du.
0 t

If R(t) is the resolvent of (L), then variation of constants yields

t o
(3.3) X(t,F) = R(t)F(0) + g R(t-s)/ B(u)F(s-u)duds.
8

First suppose that the trivial solution of (L) is uniformly
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stable. By (3.3) it follows that
)
X(t,F) = R(t)F(0) + [ R(t-s)/ B(s+u)F(-u)duds
0 0

0 t
= R(t)F(0) + ({ té E{t-s)B(s+u)ds}F(-u)du,

so that

|x(t,7)| < [R(&)|[F(O)] + y(e)lIFl,.

Here ||F||o is defined by (3.2) with ¢ =F and t =0. Since R and y
are bounded, this proves that the trivial solution of (L) is stable.

Now assume the stability of (La). Then there exists a constant
B such that for any F in C[-w,) with ||1s'||0 < 1 one has |X(t,F)] <B
for all t > 0. Given any unit vector X and any € >0 let F(t) =0
if t<-€ and F(t) = (t/e + 1)z, if t > -€. Then ||n'||0 <1,

|X(t,F)] < B and
% e
X(t,F) = R(t)xo + | R(t-8)(/ B(s+u)F(-u)du}ds.
0 0
In particular one has

t (4
IR(t)%,| < [X(t,P)| +£ In(t-s)l{) | B(s+u)| duds

t s+
<B +£ |R(t-8)| (/] |B(u)|du)ds
8

for all t >0, all € >0 and all unit vectors X,. On letting & -0
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one finds that IR(t)xol <B for all t. Thus |R(t)] <B uniformly in
t. This proves 1ii).
Finally assume that iii) is true. Given any F, since X(t,F)

and R(t) are bounded on R’ then by (3.3) it follows that

AF = ftR(t-s)fwB(u)F(s-u)duds = f“[ftR(t-s)B(s-ru)ds]F(-u)du
0 s 0 0

is uniformly bounded in t. For any fixed t >0 the symbols At. repre-
sents a bounded linear mapping of C[-»,0] into R~ with norm IIAt" =
y(t). By the principle of uniform boundedness it follows that IIAtII =
y(t) is uniformly bounded in t e R's #his provesi)s Q.E.De

The equivalence of i) and iii) in Theorem 2 remains true if in
iii) the statement "all F e C[-»,0]" is replaced by "all almost periodic
F'. Similiarly ia iii) it would be sufficient to require that F ¢ C[-»,0]

and aiditionally F(t) -0 as t - -», In general we prove

Theorem 3. Suppose B e ti(r%) and R(t) " is bounded. Let Y be a

closed, linear subspace of C[ -»,0] under the uniform nofm such that given

any f in C[-=,0] there exists a sequence f in Y such that

sup[lfn(t)lz t<0 and n=1,23..} <= and such that f (t) - £(t)

as n - uniformlygcompactrsubsetsgi: ~»<t<0, If for any f in

Y the solution X(t,f) of (L) is bounded on R+, then the trivial solu-

tion of (L) is uniformly stable.

Proof. As in the proof of Theorem 2 above it follows that [At} is a one

parameter femily of linear maps on Y into Rn‘, The At are again norm

bounded, that is if
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lagly = suetlla ez 16l =1, £ e},

then A¥ = sup ”At”Y <w. Civen f in C[-»,0], let f be the approxi-
t
mating sequence guaranteed by the hyootheses, Then for any t and any
T >0 one has
t 0
| J r(t-s)([ B(s+u)[fn(-u)-f(-u)]du)ds|
0 0] :
t T '
< [ IR(t-s)| (J |B(s+u)|| £, (-u)-£(-u)|du}
0 0
-]
: + [ |B(s+w)] au(ll£ || 1l ))as -0
T

asT,n—®, Then (3.3) implies that X(t,fn) - X(t,f) as n -« for each

fixed t > 0. In particular
| X(¢,£)| < lim inf|X(t,£ )] < (A*+sup|R(t)|)1lim inflf || ) <=

so that X(t,f) is bounded on R'. Q.E.D.

Theorem 2 has the following corollary.

Corollary 1. Suppose B e Ll(R"'). It the trivial solution of (L) is

uniformly stable, then determinant of s-A-B¥(s) #0 when Re s > 0.

Proof. Suppose that there exists a complex number so and a unit vector

X, such that Re s; >0 and (so-A-B*(so))xo = 0. If one defines X(t) =

exp( sot)xo, then X(t) is bounded on -»<t <0 and

t
Xx'(t) - ax(t) - J B(t-s)X(s)ds = [so-_A-B*(so)]xoexp( s5t) =0

=00




15

for all t. Since X(t) becomes unbounded as t -»®, then by Theorem 2,

parts i) and iii) it follows that (L) is not uniformly stable, Q.E.D.
The same type of analysis is available for :studying asymptotic

stability. Three results of this type are quoted. Their proofs are

similiar to the proofs given above,

Theorem 4, Let B ¢ Ll(R+) and suppose that (L) is uniformly stable. Then

the following statements are equivalent:

i) the trivial solution of (L) is uniformly asymptotically stable.

. ii) given € >0 there exists T(€) >0 such that the solution

X(t,F) of (L ) with initial value F at 7 =0 satisfies the bound

| X(t+T(€),F)] <€ uniformly for all + >0 and all F e C[-»,0] with

I8l < 2.

Theorem 5. Let Y be a closed supspace of C[-»,0] which satisfies the

approximation condition of Theorem 3. Then in Theorem 4 one can replace

the condition "all F e C[-»,0]" by "all F in Y".

Corollary 2. Suppose B e Ll(R+). If the trivial solution of (L) is uni-

formly asymptotically stable, then the determinant (s-A-B*(s)) # O when-

ever Re s > O.

Iv. Ll-Properties of Solutions
The purpose of this section is to prove the most important result
of the paper, namely the equivalence of uniform asymptotic stability of (L)

with R(t) in Ll(O,w). Half of this assertion is easy.

Theorem 6, Suppose B(t) and R(t) are both in Ll(R"'). ZThen
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i) R eLl(R+) and both R(t) and R'(t) -0 as t -,

ii) the trivial solution of (L) is uniformly asymptotically

stable, and

111) for eny initial value (7,f) in K x C(R') the solution

x(t,7,f) of (L) is in Ll('r,w).

Proof. Since A is a constant matrix, then AR(t) e Ll(R+). Moreover,

the convolution of two Ll

functions results in an Ll function (by
Fubini's theorem). These two facts plus the resolvent equation (R) imply
that R'(t) is in L'(R"). Since R' is in L'(R"), then R(t) has a
limit at t = w. But R € L(R') so this limit is zero. To see that
R'(w) = 0 note that the convolution of an Ll function with a function
which tends to zero at t = o yields a function which is zero at infinity.
This may be used in (R) to see that R'(w) = 0.

To prove part ii) note that by (2.2) one has

x(t+1,7,£) = R(t)1(7) + ftR(t-s)[f‘rB(s+u)f('r-u)du}ds.
C 0

Therefore, one can es”imate

t T
|x(t+7,7,£)} < [R(t)] |£(7)] +(f) IR(t~s)II£ | B(s+u) |du)as|£]| .

t '™
< lifll (IR (E) | +£ IR(t-s)IU. |B(u)|du}ds}.

The first term |R(L)] =0 as t - w, The second term is the convolution

1

of an L~ function with one which tends to zero at t = w, Therefore, the

expression




15

t ©
|R(t)| +(f) |R(t-s)| (J |B(u)|du}ds
S

is bounded and tends to zero as t — ». This proves the uniform asymptotic
stability of (L).
To prove the last assertion note that (2.2) implies that for any

T >0 one has

ITIx(t+'r,'r,f)|dt < ]f('r)lleR(t)Idt - fotIR(t-s)|fT|B(s+u)| | £{7-u)|dudsdt
0 0 00 0

® T T T
< |2(x) ][ IR(E)|at + [ [ |R(t-s)] |B(s+u)| |£(v-u)]ardsdn
0 00 s
<12 f IR(E)]at + J (f IR(s)|as [ |B(s)las)|£(v-u)] au.
0 0 0 0
Since T >0 is arbitrary, iii) is proved. Q.E.D.

The proof of the other half of the equivalence depends on the

theory of Lyaspunov functionals.

Definition 5. A Lyapunov functional _:l_s_ a continuous function V: R X

C(R+) »R' such that V(t,f) is locally Lipschitz continuous in f. The

derivative o_f V wr.t. a system £ equations

(4.1) v (t) = F(t,y), F:R xc(@®)->g

i_s defined ‘Ez_

V(t,£) = 1im sup (V(t+h,£%) - V(t,£)}/n
h-0
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where

f(s) on 0<s<t
(e} = = =
f(t) + F(t,f)(s-t) on t<s<t+h

Lemma 2. Let V(t,f) and F(t,f) be continuous and locally Lipschitz

continuous in f. Then for any (7,f) in K x C(R') the derivative of

V w.r.t. (4.1) may be written in the form

V(t,f) = lim sup (V(w+h,y(:,7,f)) - V(1,£)}/h
h-0

where y(-,7,f) is the unique solution of (4.1) with initial values (,f).

Moreover, let P(t,f) be any continuous, nonanticipative perturbation and

Y(t,7,f) ¢ny solution of the problem

Y' (t) = F(t,Y) + P(t,Y)

with initial values (7,f). Given constants A and B >0 let L be

the local Lipschitz constant for V(t,f) on (0<t <A, £ $B). If

0<T<A and ||f|1153 then

Lin sup (V(v#h,¥(-,7,8)) - V(1,£)}/h < ¥(5,2) + LR(t,2)].
h- 0+

The proof is similar to the corresponding proof for the ordinary

differential equation's case. See Driver [2] for more details.
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Theorem 7. Suppose B € Ll(R+) and suppose the trivial solution of (L)

Ls_ uniformly asymptotically stable. Then therei exists a Lyapunov function

V(t,f) with the following properties.

1) v(t,f) is locally Lipschitz continuous in f uniformly

i1) V(t,0) =0 for all t >0,

iii) V(t,f) > cno( |£(t)|) where wy(¥) 1is a positive definite

continuous function, and

iv) the derivative of V w.r.t. (L) satisfies

V(t,£) < - ([£())])

where wl(y) E a continuous positive definite function.

'_P_rggz. The proof is essentially the same as the proof of the converse
theorem of Massera [3, Theorem 8]. Pick numbers K and Tm such that if
I£ll, <1, then [x(t,7,£)] <K for all t>7 and |x(t+T +7,7,f)| <1l/m
for all t > 0. Let g(t) be a continuous, nonincreasing, positive func-
tion such that g(t) =K on 0<t<T, eand g(T) = 1/(m-1) for
m=2,3M4,... . Then |x(t+7,7,f)| <g(t) -0 as t > whenever 7> ¢
and £l < 1. For this g(t) there exists a function G(y) ¢ Cl(R+)
such that G(y) >0, G'(y) >0 for all y >0, G(0) = G'(0) = 0, G'(¥)

is increasing in y and for any constant C > O the integrals

{:G(Cg(s))ds and {)‘G'(Cg(s))ds
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are finite (see Massera [3, p. 716]). Define
o
V(t,f) = [ G(|x(s+t,t,£)|)ds
0

where x(t,7,f) is the unique solution of (L) with initial values (T,f).
! Since x(t,7,f) is continuous on R’ X R’ X C(R') and the
integral in the definition of V converge uniformly for t >0 and

I£l, <&, for any fixed A >0, then clearly V: R x C(R') R is
continuous and nonanticipative. In order to see that V(t,f) locally
Lipschitz continuous in f uniformly in t > 0 fix any constant B > 0.
Pick f, and £, 1" &

Since G'(y) is increasing, then for any pair of vectors a and b one

with |f and "f2"t both less than or equal to B.

has

la(le]) - a(]p])] <6 (ala] + (1-a)|v])(|a]-|p]) (0 <q<1)

< &' (|af+|o])|e-p].
By stability there exists a constant K > 0 such that if ||g]| g S1 then
|x(s+t,t,0)] <K for all t,s > 0. Thus one has

lV(t,fl) ' v(t:fg)l f_é IG(lx(s"'t:t)fl)I) - G(lx(s+t:t)f2|)|d5

[ 6 (] x(s+%,8,8)| + |x(s4t,t,£,)] )| x(s+t,t,£,-£,)|ds
0

IA

< é GY(2Bg (s) )K||£, -£,l| ds

= (X J 6{2Bg (s) )as)l|£, -5, .
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This proves the Lipschitz continuity.

To see that V is positive definite let t >0 De fixed and
let B be a given constant. By stability if | f|| ¢ S B, then x(s+t,t,f)
is uniformly bounded. Hence |[x'(s+t,t,f)| < a(B) is uniformly bounded

for t,s >0 and [f]l, <B. This means that
[1(s44,5,2) - 20| < 5 a(®) < |£(5)]/2

if 0<s < |f(t)|/(2x(B)). Using this in the definition of V it follows

that

o(]£(t)])
v(t,f) _>_£ a(|£(t)]/2)at = wy(|£(t)])

it ||fl, =B ard o(y) = ¥/(2a(B)).

Finally, note that

V(t,x(t,r,f)) = [ g([x(s+t,t,x(t,‘r,f))|)ds
0
= f“G(lx(s+t,'t,f)|)ds
0

= ]“G(|x(s,‘r,f)|)ds.
t

Therefore, the derivative of V w.r.t. (L) is

U(e,£) = -a(l£(t)]) = < (1£(¥)]).

This {unction is negative definite. Q.E.D.
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Theorem 8, Suppose B ¢ Ll(R+) and (L) is uniformly asymptotically stable.

Then the perturbed equation (2.1) has the following %ype cf stability:

Given any € >0 there exist two positive numbers Ny and . such that

for any initial velues (7,f), if ”f"'r <n, end if P(t,f) is any con-

tinuous, nonanticipative function with |P(t,f)| < p on the set

(t >0, ”f”t < €j, then 1y solution y(t,7,f,P) of (2.1) exists and

satisfies |[y(t,7,f,P)| <€ for all t > .

Proof. Given € >0, let mo(y) and o, (y) be the positive definite
functions given in Theorem T and let L ©be the Lipschitz constant for
V(t,f) when |]f||,c < €. Define m = min (w/(y): ly] = e). Since v(t,f)
< L||f||t when ||f||t <e, then V(t,f) <m if ||f||t <n, end 7 =

min (€/2, m(2L)"l]. Let a=min {0 (y) =1, <|y| <€) and set n, =
a/(2L). This choice of n, and 7, will do.

Let f and P be majorized by n, and 1, and let o(t) =
y(t+t,7,£,P). Since ¢(t) is continuous end |[p(0)]| = [£(0)| < n, <€,
then |p(t)] <¢ for t sufficiently small. If @(t) gets into the
region 1n; < lp(t)| <€, then in this region the derivative ﬁp of V

w.r.t. (2.1) satisfies

Vp(t+7,9) < Vp(t+7,9) + L|P(t+1,0)]
< -, (lo(t)]) + Iny

< -a+ la/(2L) = -g/2 < 0.
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This means that V(t+'r,(p) is decreasing in this region. In particular,
V(t+71,9) <max (V(t,f): t >0, Ilflit <m) <m so that lp(t)| <e. Since

|p(t)| can never reach the circle |g(t)| =€, the proof is complete. Q.E.D.

Corollary 3. If B e Ll(R+) and if (L) 4is uniformly asymptotically

steble, then the resolvent R(t) associated with the linear system (L)

is of class Ll(R+).

Proof. The solution cf the inhomogeneous problem

t
y'(t) = Ay(t) + é B(t-s)y(s)ds + F(t), y(0) =0

is given by

t
(4.2) y(t) = [ R(t-s)F(s)as  (t >0).
0

If F is bounded and continuous on R+, then by Theorem 8 (with P(t,f) =
€F(t) and with € sufficiently small) it follows thet €y(t) is bounded
on R'. Thus y(t) is bounded. Since y(t) is given by (4.2), the
conclusion of the corollary follows from a result of Corduneanu [k4,

Theorem 3]. Q.E.D.
V. Some Consequencesof Condition (D).
Let B e Ll(R+) , let B (s) be the Laplace transform of B and

assume that

(D) det (s-A-B*(s)) # 0  when Res > O.

mmmm—
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Condition (D) is certainly necessary for uniform asymptotic stability of
(L). Here we seek additional conditions on B which insure uniform

stability or uniform asymptotic stability of (L).

Theorem 9. Suppose B ¢ Ll(R+) and suppose (D) is true.

1) If for some p in the interval 1< p <2 one has

[ (f |B(u)]aw)Pas < =
0 s

then (L) is uniformly asymptotically stable.

11) 1If there exists a p in 1< p<2 such that

1 U 1B(0) | Paw) Y Pas < o,
0 s

then the trivial solution of (L) is uniformly stable and asymptotically

-stable.

Proof. By Lemma 1 above the transforms R*(it) and (R')*(it) are of
class Lp(-w,-) for 1<p< 2. The Fourier transforms of these functions
are 27R(-t) and 2mR'(-t) on -w<t <0 and zeroon O0<t <w But
the Fourier transform of an IP function with 1 < P< 2 1is of class
L3(-w,») where 1/p + 1/q = 1, see Titchmarsh[5, p. 96]. Therefore, R
end R' € LY(0,®) for all g in the intervel 2 < q<w. This implies
that R(t) -0 as t — w, The argument used in the proof of Theorew 5
shows that R'(t) 20 as t e,

Let s and t be numbers bigger than one and let r be the

solution of the equation
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1/r = 1fs + 1/t = 1.

Ir © > 1, then the convolution of a function in L° (R+) with a fuaction
in L°(R") yields a function in I'(R’), sec Titchmarsh[5, p. 97]. I
= +o, the resulting function is in L”(R+) and tends to zero as t - =,
see e.g., Rudin [6, p. 4, part (d)].
To prove i) we use Theorem 4. Let X(t,F) be a solution of
(L,) with initial value F at 7 =0, that is |
t ©

X(t,F) = R(t)F(0) + [ R(t-s)({/ B(u)F(u-s)du}ds.
(0] s )

Then one has

t [ .
|x(¢,F)] < [R(t)] |F(0)] + é |R(t-5)[/ |B(w)|auas|F|,

< (R + (f)"IR(t-s)IfwlB(u)IdudslliFllo-
S

We know that |R(t)| -0 as t s w. If

b(s) = [ |B(u)|du
s
Pt -
is in L°(R) for some p in 1 <p <2, then since R e L*(R) for
q = p/(p-1), then the convolution is bounded and tends to zero as t — w,
If b(s) is of class Ll(R+), then since R(t) -0 as t -, the con-
volution still tends to zero as t - o, Thus (L) is uniformly

asymptctically stable.




et )

2l

To prove ii) first note that if 1/p + 1/q = 1, then

t ' © o %
2(t) = [ |R(t-5)|f |B(w)|auds = [ [ |R(t-s)| |B(s+u)|dsan
0 s 0 0

;;_:;
S
!:
H
E
s
£
z
£
s
i
:
3
E
:
i

« t
</ (R (b-8)] %) Y3 |3 (svu) | Pas) Y Pa
0 0 . 0
< I U 1R(s)1%s) /%S [ 8(s)|Pas) M Pa.
0 o u .

Thus Z(t) is uniformly bounded on R'. Since Z(t) > y(t), then by
Theorem 1 it follows that (L) is uniformly stable. To see that (L)

is asymptotically stable consider a solution,

t
x (t+1,1,f) = R(t)£(7) + [ R(t-s)fTB(s+u)f(1-u)duds.
0 0

We know that R(t) >0 a&s t —» o, Consider the second term
t T
%o(t) = | R(t-s)(/ B(s+u)f(v-u)du}ds.
0 0
If q = p/(p-1), then
t T T
If B(s+ ) e(r-w)au] < (f |B(s+u)|Pau)/P(f |2 (r-u)| aw M/
0 0 0

< UnlB(u)lpdu}l/P((f:If(u)quu}l/q-
/ |

Therefore, x,(t) 1is the convolution of R ¢ LY(E") with an L function,

that is x,(*) € Lq(R+). Since x5 (t) l?a.s 2 bounded derivative, it tends
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to zeroas t ->w, Q.E.D.
As an example if B(t) = O(t™¥) as t > for some constant
a > 3/2, then the hypotheses of Theorem 9, i) and ii) are satisfied. One

cen use any value of p in the range (oz-l)'l <p <2. If
@
[ IB@®)]dt = B(s* as s »w
s

where q >é , then the hypotheses of part i) are true.

Theorem 10. Suppose B e Ll(o,no) and (D) is true. Suppose B*(it) is

2ocally Holder continuous with exponent o

|B¥ (it+ih) - B¥(it-ih)| < K(7)n®

where K(7) (l+'1'2)'l € L2(-ao,w). If either @ > 1/2 or if 0<a< 1/2

‘and there exists a number q > 2 such that

(5.1) [ |B(u)|du}qu <w and a+ 1l/qa>1/2,
0 s I

ther. (L) is uniformly asymptotically stable. On the other hand if

0 <a<1l/2 and there exists a number q >2 such that

(5.2) fw{ f°|B(u) |qdu}l/ Us < @ and a + 1/q > 1/2,
0 s

then (L) is both uniformly stable and asymptotically stable,
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Proof. Since R*(it) = (iT-A-B*(iT)]-l and B¥(it) 20 as t - two, then

R¥(it+ih) - R¥(it-ih) = (2ih+B*(it-ih) - B*(i'r+ih)]ﬁ('r'2).

The Holder continuity of B¥ and the integrability of K(t) imply that

fn |R¥ (it+ih) - R¥(it-ih)|Par = & L)

as h->0 for any p in (1,2]. This means that the Fourier transform

of R¥(it) is in Lr(-oo,oo) for all r in the range
=1 -1
p(p+ap-1)"" < r < p(p-1)"",

see Titchmarsh [5, p. 115]. The maximum value of the lower limit occurs

when p = 2 so that
-1
2(a+l)"" <r<a.
In particular if 1/2<a<1, then Re Ll(R+) ard (L) is uniformly
asymptotically stable by Theorem 6 above.

Suppose O < @ < 1/2. Then the function y(t) defined in

Theorem 1 above satisfies

t )
y(t) <z(t) = é |R(t-5)| (/ |B(u)|du}ds.
8

But Z(t) is the convolution of a function in Lr(2(2ccfl)'l <r <)
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with a function in LY. This range of values for r includes a value for

which 1/q + 1/r = 1. Therefore, Z(t) -0 as t - w,

On the other hand if (5.2) is true, then cne can estimate
o t
z(t) = [ {J |R(t-s)| |B(s+u)|ds)ds
0 0
o t A
<Iu |R(t-5)]Fas) /TS |B(s+u)| %s) Y %au
0 O 0

< t{:IR(s)lrdsll/ ' ({mu"w(s)l‘lds}l/qdu.

Since Z(t) is bounded on R+, then Theorem 1 asserts the uniform stability

of (L). As in the proof of Theorem 9 one can show that xo(t) =
x(t+1,1,f) - R(t)f(7) 4is in Lq(R+) and so xo(t) -0 as t - o This
will prove the asymptotic stability of (L). Q.E.D.
Note that in Theorem 10 the assﬁmption that B* is Holder con;
tinuous and K(T) (l+12)-le Lz(-oo,oo) could be replaced by any other
assumption which will insure that
o

[ |R*(it+ih) - R*(it-ih)|%ar = HK>%)
-

as h-0.

It is easy to find examples where the Lypotheses of Theorem 10
may be verified. Suppose tB(t) € LP(O,ca) for some p in l1<p<2.
Let 1/p + 1/q = 1. Then the function d/ds[B¥(s)] = f“exp(-st) (-tB(t))at
is uniformly integrable LY on each vertical line seg;gent in Res >0,

say

Je—
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oy *
sup ([ | -gi:- (o+it)|%d7: o >0} = Al<o
0

(see Titchmarsh [5, p. 97, line 4.1.2]). Thus for any o > 0 the Holder

inequality implies that
(5.3) |B* (o+it+ih) - B¥(o+it-ih)| < A(2n)%
on .o< T< o where h is any positive constant and a = l/p. Since
] o« L (-]
[ |B(v)|at = [ [B(t)| -t at < | tB(t) |Pat) P +-%t) Y9 < a,
then B ¢ Ll(O,eo). Thus B¥(s) is continuous on the half plane Res > 0.
The continuity of B¥(s) allows one to take the limit as ¢ =0  in (5.3).
It follows that (5.3) remains true when o = O.

For example, if tB(t) e L-(R'), then (5.3) is true with o = 1/2.

In addition, one has

¥ '(ﬁ wl B(u)}du)°ds = f“([l uB(u)| -utau)2ds
< f°<{ "JuB(u)| 2au) (s73/3)as

- (g.luﬂ(u)ladu) f.(8'5/3)d8 <o

Therefore, (5.1) is true with o= 1/2 and gq = 2.
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VI. Asymptotic Stability.

The purpose of this section is to prove the following theorem.

Theorem 11, Let B e Ll(R+) and let (D) be true. Then the trivial solu-

tion of (L) Ei asymptotically stable. Moreover, for any initial value

(t,f) in R X C(R+) the solution x(t,7,f) of (L) is of class Lq['r,eo)_

for each q € [2,=).

Proof. Let x(t) = x(t+7,7,f) so that

t L]
R(t)f(7) + [ R(t-s){[ B(s+u)f(7-u)du}ds,
0 0
pe
for all t > 0. From Lemma 1 we know that R and R' € Lq(R+) for all

(6.1) x(t)

qa > 2, and that R(t) -0 as t - =, The Laplace transform of the second

term in (6.1) is

@(s) = R*(s) CI)T{{) exp(-st)B(t+u)dt) £ (T-u)du,

where R*(s) is the transform of the resolvent R(t). By Lemma 1 above

one has

' T o ) .
lo(s)] 5x<1+|s|>'1.£ U [3(t)] %) | £(r-u) | an

< xaelal)™ [ 1a(e) et [0 an.

In particular, then |p(i7)| e Lp(-n,n) for any p in (1,2], The Fourier

transform of ¢(itr) is then of class Lq(-u,w) forall q in 2<q<w®
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(c.f. [5, p. 97]). This Fourier transform is essentially the second term

in (6.1). Therefore, x(t) = x(t+1,7,f) € Lq(O,m) for 2 <q<w,

When p =q =2 in the analysis above, then the term
t T
z(t) = [ (t-8)(/ B(s+u)f(r-u)du)ds
0 0

is in La(O,w) and

[ ze1Pas < VB & [ IB)las [ Je@)lan [ (14e) ae
0 0 0 -0

T
Kl é | £(u)]du,

where K, is a fixed constant independent of 7 and f. By (6.1) it
follows that [x(t)| <[R(t)|[£(7)] + |Z(t)] € Lz(o,cn). Since

t
x'(t) = & (t) + [ B(t-s)x(s)ds + fTB(s+T)f(t-u)du,
0 0

then x'(t) is the sum of two 1=

functions and a function which tends
to zero as t - . Thus x(t) is also uniformly continuous on R end
x(t) -0 as t o,

In order to prove stability note that

' T t
|x(t)] < [R(E)| [£(7)] + I(f) (é R(t-s)B(s+u)ds)f(r-u)du]

. T o
< [R(t)| |£(7)| + sup |R(t)| [ (J |B(u)|du}|£(r-u)|au
>0 0 u
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T

<swp (R ([£(x)] + ] 1B()]an [ |£(u)|av).
>0 0 0

This shows that x(t) is uniformly small when f(u) 4is small uniformly

on 0<u< 1. Q.E.D.

The asymptotic stebility could also be proved by showing that

the functional
= + +
V(t,£) = [ |x(s+t,t,£)|%s, (t,£) € R x C(R)
0

is & Lyapunov functional (for any q in [2,w)) which satisfies the

hypotheses of an asymptotic stability thecrem of Driver [2, Theorem 6].

VII. Some Examples and Questions.

In order to obtain examples which satisfy (D) one can pick any

@
function B e Ll(R+). Then pick a constant A < -/ |B(t)|dt. It follows
0

that (D) is always true. To find an example with A = 0, let

B(t) = -nE‘.oan exp (-b t)

where the a iy and bn are positive and where

n{.oa.n <® and !Eo(an/bn) < w,

The convergence of these series is sufficient to insure that B 1is in

it (R"). Then
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-2 1
-B¥(s) = L a_(s+b )"
om0 n n 4
so that if s =0 + it and o > 0 one has

Re(s-B*(s)) = o + E an(c:ﬂan)]s+'bn|'2 > D
n=0

Therefore, s - B*(s) # O when Res > 0. Since the a and b areall

positive it is easy to compute certain integrals involving B(t). For

example

cf) ItB(t)ladt =2 X anam(bn+bm)'5,

n,m=0

If this last sum is finite, then Theorem 10 applies.

The results in this paper suggest several interesting questions.
For example, in Theorem 9, part i) is the conclusion still true if p is
in the range 2< p < «? Similarly in part ii) is the conclusion true if
2 < p<w? In Theorem 9, part ii) can the conclusion be strengthened to
uniform asymptotic stability? If these results are true, then are the
hypotheses .of Theorem 11 sufficient for uniform asymptotic stability?

Hannsgen [7] has given sufficient conditions on the ccefficients
A and B(t) in (L) so that the resolvent satisfies R¥(it) ¢ LP(--,-)
for 1<p< 2 even thovgh B(t) is not in Ll(R+). Under Hannsgen's

assumptions it would be interesting to see what types of stab..ity are

present. Even more important, can one show that R(t) or R'(t) e Ll(R+)?
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